Complex Numbers Cheat Sheet

complex numbers are used by physicists and engineers, specifically in electroniss. Complex numbers allow two real quantities to be put together, making the numbers easier to work with, and allowing more complex

Complex numbers and imaginary numbers

When solving quadratic equations with the quadratic formula, some equations can't be solved and do not give eal solutions. This occurs specifically when the discriminant $\boldsymbol{b}^{2}-4 a \boldsymbol{c}$ is less than 0 , as the expression under the square root in the quadratic formula is stem to include the concept of $\sqrt{-1}$, denoted i, we can represent any solution.

- $i=\sqrt{-1}$
- An imaginary number is a number of the form $b i$, where $b \in \mathbb{R}$
- A complex number can have both real and imaginary parts and is written in the form $z=a+b i$ $a, b \in \mathbb{R} . \operatorname{Re}(z)=a$ is the real part and $\operatorname{Im}(z)=b$ is the imaginary part.
xample 1: Write $\sqrt{-44}$ in terms of i.
Factor out the negative, using rules of surds that you
Use the fact that $i=\sqrt{-1}$ to rewrite in terms of i.
Simplify the real surd.

$$
\begin{gathered}
\sqrt{-44}=\sqrt{44} \times \sqrt{-1} \\
\sqrt{-44}=\sqrt{44} i \\
\sqrt{-44}=\sqrt{4} \sqrt{11} i \\
\sqrt{-44}=(2 \sqrt{11}) i
\end{gathered}
$$

When adding and subtracting co
terms must be added separately
xample 2: Simplify the sum $(3+4 i)+(5-6 i)$ into the form $a+b i$, where $a, b \in \mathbb{R}$.
Add the real terms.
$(3+4 i)+(5-6 i)=8+4 i-6 i$
Add the imaginary terms.
$(3+4 i)+(5-6 i)=8-2 i$
Complex numbers can be multiplied by a real number by expanding brackets in the usual way.
Example 3: Evaluate $2(6+5 i)$
Multiply out the bracket in the usual way, keeping
the real and imaginary terms separate.

```
\(2(6+5 i)=(2 \times 6)+(2 \times 5 i)\)
```

When multiplying complex numbers, you can multy out the brackets in the usual way but take int consideration that $i^{2}=-1$ and is therefore real

Example 4: Simplify the product $(3+4 i)(-5+6 i)$ into the form $a+b i$, where $a, b \in \mathbb{R}$.

| Expand the brackets in the normal way. $\quad(3+4 i)(-5+6 i)=-15+18 i-20 i+24 i^{2}$ |
| :--- | :--- | Simplify the i^{2} term and collect like terms. $(3+4 i)(-5+6 i)=-15+18 i-20 i-24$ $\begin{aligned}(3+4 i)(-5+6 i) & =-15+18 \\ & =-39-2 i\end{aligned}$

Example: Evaluate i^{4} and i^{5}.
Use the fact that $i^{2}=-1$ to find i^{4}.

4^{4}	$=i \times i \times i \times i$
$=$	-1×-1
$=1$	
i^{5}	$=i \times i^{4}$
	$=i \times 1$
	$=i$

Use the result of i^{4} to calculate i^{5}. $=i \times 1$

If you have a graphical calculator, it can compute these expressions for you, but it is very important that you can do it yourself as some questions may include a parameter that you can't put into your calculator. You can use complex numbers to find the solution to any quadratic equation with real coefficient Example 5: Solve the equation $x^{2}+4 x+5=0$ using the quadratic formula.

| Substitute the values $a=1, b=4$ and $c=5$ into |
| :--- | :---: |
| the quadratic formula. |\quad| $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ | |
| :---: | :---: |
| $x=\frac{-4 \pm \sqrt{16-4(1)(5)}}{2(1)}$ | |
| Simplify the expression. | $x=\frac{-4 \pm \sqrt{-4}}{2}$ |
| Put the expression into the form $a+b i$. | $x=-2 \pm \frac{2 i}{2}=-2 \pm i$ |

Edexcel Core 1

Example 6: Solve the equation $z^{2}-2 z+17=0$ by completing the square

Find an expression for $z^{2}-2 z$ by halving the coefficient in
front of the z term to find what should go inside the
front of the z term to find what should go inside the
$z^{2}-2 z+1$, so we must subtract 1 to make the expressio
equivalent to $z^{2}-2 z$.
Adjust the expression to

$$
\begin{aligned}
z^{2}-2 z+17 & =(z-1)^{2}-1+1 \\
& =(z-1)^{2}+16
\end{aligned}
$$

$(z-1)^{2}+16=0$
Set the cold $\begin{aligned}(z-1)^{2} & =-16 \\ z-1 & = \pm \sqrt{-16}\end{aligned}$
equation.
$\begin{aligned} z-1 & = \pm 4 i \\ z-1 & =1 \pm 4 i\end{aligned}$

Complex conjugatio

for a complex number $z=a+b i$, the complex conjugate is defined as $\boldsymbol{z}^{*}=\boldsymbol{a}-\boldsymbol{b} \boldsymbol{i}$
xample 7 : For $z=3-8 i$, find $z^{*}, z+z^{*}$ and $z z^{*}$.
Find z^{*} by changing the sign of the imaginary part.
Evaluate $z+z^{*}$.
$\begin{aligned} z+z^{*} & =3-8 i+3+8 i \\ & =6\end{aligned}$

Evaluate $z z^{*}$
$\begin{aligned} z z^{*} & =(3-8 i)(3+8 i) \\ & =9+24 i-24 i-64\end{aligned}$
$=9+24 i-24 i-64 i$
Dividing complex numbers is similar to simplifying fractions involving surds - it is not good practice to have an imaginary number on the denominator of a fraction (just like surds), and thus it can be simplified by realising (or ationalising, equivalently for surds) the denominator of the fraction, which can be achieved by using the complex conjugate.
Example 8: Write $\frac{3+2 i}{4+5 i}$ in the form $a+b i$.
Find the complex conjugate of the denominator.

$$
(4+5 i)^{*}=4-5 i
$$

$$
\frac{3+2 i}{4+5 i}=\frac{3+2 i}{4+5 i} \times \frac{4-5 i}{4-5 i}
$$

Multiply the numerator and denominator of the $=\frac{12-15 i+8 i-10 i^{2}}{16-20 i+20 i-25 i^{2}}$ $=\frac{22-7 i}{41}=\frac{22}{41}-\frac{7}{41} i$

Roots of quadratic equations

If the roots of the quadratic equation $a z^{2}+b z+c=0$, with real coefficients, are complex numbers, then the ccur as conjugate pairs. This means that if z is a root, then z^{*} must be too. This is useful in finding all of the ots of an equation or finding the original equation itself.

If the roots of a quadratic equation are α and β, then the equation can be written as $(z-\alpha)(z-\beta)=0$ or $z^{2}-(\alpha+\beta) z+\alpha \beta=0$
vample 9 : Given that $\alpha=6+9 i$ is a root of a quadratic equation with real roots, state the value of the othe oot β and find the quadratic equation.
, β,
Either use the product and sum of the roots, or
expand the factorised equation to find the equation. $\beta=6-9 i$
$\alpha+\beta=12$
$\alpha \beta=36-54 i+54 i-81 i^{2}=117$
State the quadratic equation.
$z^{2}-12 z+11=0$

Solving cubic and quartic equations

The statements we have made about complex conjugate roots don't only apply for quadratic equations - they also apply for polynomials of higher degree, such as cubics and quartics.

If $f(z)$ is a polynomial with real coefficients and z_{1} is a root of $f(z)=0$, then z_{1}^{*} is also a root of $f(z)$ 0.

- Any cubic equation with real coefficients either has three real roots (that may be repeated) or a comple conjugate pair and one real root.

Example 10: Given that 1 is a root of the equation $z^{3}-7 z^{2}+k z-10=0$, find the value of k and the other two roots of the equation.
)
value k
ind the roots of the equation by either long division
or equating the coefficients of a quadratic
The coefficient of z^{3} is 1 , so the coefficient of z^{2} must .
Equating the coefficie
also be
$b=10$
$-7 \stackrel{y}{\Rightarrow}=-6$
State the quadratic factor of the cubic. The two other $z^{2}-6 x+10=0$ Sts of the cubic will be the roots of the quadratic.
Use the quadratic formula, or your preferred method
of find the roots of the quadratic.
$(1)^{3}-7(1)^{2}+k-10=0$
$k=10+7-1$
$k=16$
$\frac{k=16}{}$

State all the roots of the cubic.
ic.

An equation of the form $a z^{4}+b z^{3}+c z^{2}+d z+e=0$ is a quartic with reacoefficients. Either al four roots are real (some may be repeated), two roots are real and the other two roots a complex
conjugate pair, or there are two sets of complex conjugate pairs as roots - these can be repeated, for example the equation $(z-(2-3 i))(z-(2+3 i))(z-(2-3 i))(z-(2+3 i))=0$

Example 11: Given $1+3 i$ is a root of the equation $z^{4}+2 z^{3}-3 z^{2}+50 z-50=0$, find the other three roots.

Use the concept of complex
Use the concept of complex
onjugate pairs to find anothe

conjugat
root.
Find a qu

artic using the factor of the quartic
found.
nd the second quadratic factor
the equation, either by long
ivision or equating the
coefficients.
$1+3 i$ is a root, then $(1+3 i)^{*}=1-3 i$ is also a roo
$(z-(1+3 i))(z-(1-3 i))=z^{2}-2 z+10$
$\left(z^{2}-2 z+10\right)\left(z^{2}+a z+b\right)=z^{4}+2 z^{3}-3 z^{2}+50 z-50$ $=z^{4}+a z^{3}+b z^{2}-2 z^{2}-2 a z^{2}-2 b z+10 z^{2}+10 a z+10$

$$
\begin{gathered}
a-2=2 \Rightarrow a=4 \\
10 b=-50 \Rightarrow b=-5 \\
\text { Checking: }
\end{gathered}
$$

$b-2 a+10=-3$
$-2 b+10 a=50$
So, the second quadratic factor is $z^{2}+4 z-5$.
$z^{2}+4 z-5=(z+5)(z-1)$
So, $z=-5$ or $z=1$

Find the roots of the secon uadratic factor using you $z=1+3 i, 1-3 i,-5$ or 1

